Acta Cryst. (1967). 23, 504

Crystal transition in diammonium hydrogen orthophosphate. By R.V.Coates and P.S.Smith, Department of Chem-

 istry, Levington Research Station, Ipswich, Suffolk, England(Received 7 December 1966 and in revised form 8 March 1967)

Abstract

A high-temperature polymorph of diammonium hydrogen orthophosphate is produced when diammonium phosphate is heated to a temperature above $\sim 140^{\circ} \mathrm{C}$ (precautions being taken to prevent ammonia loss from the sample); reversion to the room-temperature form occurs at about $100^{\circ} \mathrm{C}$. At $120^{\circ} \mathrm{C}$ the unit cell is orthorhombic, of dimensions $a=10 \cdot 78, b=14 \cdot 46, c=9 \cdot 06 \AA$, and the probable space-group is primitive. The powder-diffraction pattern is given, and the relationship of this high-temperature form to the roomtemperature form discussed.

Many ammonium salts have characteristic transition temperatures at which crystalline changes occur: for example, ammonium chloride and bromide both convert from the cubic lattice $\operatorname{Pm} 3 m$ to the cubic lattice $F m 3 m$ as their temperatures are raised through 184.3 and $137 \cdot 8^{\circ} \mathrm{C}$ respectively, while ammonium dihydrogen orthophosphate changes from the orthorhombic lattice Fdd2 to the tetragonal lattice $I 42 d$ as its temperature is raised through $-126^{\circ} \mathrm{C}$. Solid diammonium hydrogen orthophosphate loses ammonia readily on heating, and for this reason it has been little studied at elevated temperatures. During a differential thermal analysis investigation on $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ in sealed containers (Sherwin, 1964) an endothermic peak characteristic of a crystalline transition was observed.

The transition temperature appeared to be slightly influenced by the presence of water and by repeated cycling through the transition, but was little affected by the rate of heating and cooling, within the range $0 \cdot 25-2.5^{\circ} \mathrm{C}$ per minute. In a substantially anhydrous sample the conversion $\beta \rightarrow \alpha(\alpha$ and β are defined as the high and low temperature forms, respectively) took place at $145^{\circ} \mathrm{C}$ and the reverse change $\alpha \rightarrow \beta$ at $102^{\circ} \mathrm{C}$; after 17 complete cycles the conversion temperatures were $126^{\circ} \mathrm{C}$ for $\beta \rightarrow \alpha$ and $98^{\circ} \mathrm{C}$ for $\alpha \rightarrow \beta$. In the case of a sample containing $5 \mathrm{wt} . \%$ water, the change $\beta \rightarrow \alpha$ occurred at $135^{\circ} \mathrm{C}$ on the first heating cycle, and $\alpha \rightarrow \beta$ at $93^{\circ} \mathrm{C}$; after 34 cycles $\beta \rightarrow \alpha$ took place at $128^{\circ} \mathrm{C}$ and $\alpha \rightarrow \beta$ at $92^{\circ} \mathrm{C}$. The repeated cycling caused only a small reduction in the transition temperature hysteresis.

The latent heat associated with the transition, calculated from the area of the thermal analysis peaks, was $5 \cdot 5 \mathrm{cal} . \mathrm{g}^{-1}$. (standard deviation 0.2 cal.g ${ }^{-1}$.).

The conversion was studied by X-ray powder diffraction with the Geiger diffractometer (Coates \& Woodard, 1963) and specimen-heating adaptation (Coates \& Woodard, 1964) previously described. The $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (all through 300 B.S.S. to provide sufficient crystallite randomization) was pressed into a $\frac{1}{2}$ in. diameter disc at a pressure of 10 tons.in ${ }^{-2}$. To reduce ammonia evolution, the disc was enclosed in a fold of Kapton polyimide film (thickness 0.001 in.$)$, the edges of the film being sealed with Evostik. A thermocouple element was attached to the irradiated surface of the disc using Evostik and the leads brought out of the packet through a sealed edge. At $120^{\circ} \mathrm{C}$ and for 30 minutes X-ray exposure time, the ammonia loss and consequent production of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ peaks in the diffraction pattern were insignificant. The disc used to obtain the measured diffraction pattern was heated as rapidly as possible to $145^{\circ} \mathrm{C}$, and then immediately cooled to $120^{\circ} \mathrm{C}$. This gave an $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ content in the diffraction pattern
of about 5%, which caused no interference with the $\alpha-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ peaks.

The X-ray powder-diffraction pattern for $\alpha-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ at $120^{\circ} \mathrm{C}$ is given in Table 1. Use of the Hesse-Lipson solting method (Lipson, 1960) yielded an orthorhombic unit-cell: $a=10 \cdot 78, b=14 \cdot 46, c=9.06 \AA$. The indices of the lines are given in the table, together with a comparison between $\sin ^{2} \theta_{\text {obs }}$ and $\sin ^{2} \theta_{\text {calc. }}$. The final column quotes the statistical error which can be expected in $\left(\sin ^{2} \theta_{\text {obs }}-\right.$ $\sin ^{2} \theta_{\text {calc }}$) for a unit cell of these dimensions, calculated according to the method of de Wolff (1961). All actual errors are smaller than those statistically expected, indicating a good probability that the derived unit cell is the correct one. The lack of systematic absences in $h k l$ terms suggests

Table 1. X-ray powder-diffraction pattern for $\alpha-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ at $120^{\circ} \mathrm{C}$

the cell is primitive, and there are no obvious systematic absences in $h k 0$ or $0 k l$ terms. There is only one $h 0 l$ term (in which $k+l=2 n$), making no conclusion possible from these; in the cases where $0 k 0$ and $00 l$ terms have k and l odd, acceptable duplicate indices are available, again making conclusions impossible.

Data for β - $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ were given by Smith, Lehr \& Brown (1957): $a=8.03, b=6 \cdot 68, c=11.02 \AA ; \beta=113^{\circ} 38^{\prime}$; 4 molecules per unit-cell, calculated density $1.61 \mathrm{~g} . \mathrm{cm}^{-3}$. It is to be noted that $c \sin \beta=10.09 \AA$, which compares with $10 \cdot 78 \AA$ for the a axis of the α form, suggesting that this direction may remain common to both forms, merely expanding slightly. If the α form had 8 molecules per unit cell, the calculated density would be $1.25 \mathrm{~g} . \mathrm{cm}^{-3}$. The ratio of low-temperature-form density to high temperature-
form density is then $1 \cdot 29$, which compares with ratios of 1.24 and 1.20 for $\mathrm{NH}_{4} \mathrm{Br}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ respectively.

References

Coates, R. V. \& Woodard, G. D. (1963). J. Sci. Fd. Agric. 14, 398.
Coates, R. V. \& Woodard, G. D. (1964). J. Chem. Soc. p. 1780.

Lipson, H. (1960). In The Interpretation of X-ray Diffraction Photographs. p.191. 2nd Edition. London: Macmillan. Sherwin, K. A. (1964). J. Sci. Instrum. 41, 7.
Smith, J. P., Lehr, J. R. \& Brown, W. E. (1957). Acta Cryst. 10, 50.
Wolff, P. M. de (1961). Acta Cryst. 14, 579.

Acta Cryst. (1967). 23, 505

Effect of wavelength on the sign of the photo-elastic constant ($P_{11}-P_{12}$) of crystals of sodium-chloride structure. By K.G.Bansigir, Department of Physics, Osmania University, Hyderabad-7, India

(Received 16 February 1967)
A new method is presented for calculating the reversal wavelength at which the strain optical constant ($P_{11}-P_{12}$) for alkali halides of sodium-chloride structure changes sign. Calculated absolute strain optical constants, their ratios and the strain polarizability constants of rubidium halides are given.

Bansigir \& Iyengar (1961a) developed a theory of piezooptic birefringence in cubic crystals of sodium chloride structure. The expressions obtained were:
and

$$
\begin{equation*}
\left(n^{3} / 2\right)\left(P_{11}-P_{12}\right)=3 M-(1+\sigma) A \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(n^{3} / 2\right)\left(P_{11}+2 P_{12}\right)=(3 L-A)(1-2 \sigma) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(n^{3} / 6\right)\left(P_{11}+2 P_{12}\right)=L\left(1-\lambda_{0}\right) \tag{3}
\end{equation*}
$$

$$
\lambda_{0}=2 \sigma+A(1-2 \sigma) / 3 L
$$

$$
M=\left(n^{2}-1\right)^{2}\left(n^{2}+5\right) / 45 n
$$

$$
L=\left(n^{2}-1\right)\left(n^{2}+2\right) / 6 n
$$

and

$$
\begin{aligned}
& A=\frac{\left(n^{2}+2\right)^{2}\left(n^{2}+5\right)}{54 n}\left[1.458+2.9005 \beta\left(\frac{1}{f_{1}}+\frac{1}{f_{2}}\right)\right] \times \theta^{2} \\
& \quad-\frac{\left(n^{2}-1\right)\left(n^{2}+2\right)\left(n^{2}+5\right)}{18 n}\left[2.916+4.2083 \frac{\beta}{f_{1}}\right. \\
& \left.+7.5927 \frac{\beta}{f_{2}} \theta\right]+\frac{\left(n^{2}-1\right)^{2}\left(n^{2}+5\right)}{3 n}\left[0.2711+1.6922 \frac{\beta}{f_{2}^{-}}\right] .
\end{aligned}
$$

P_{11} and P_{12} are the strain-optical constants, n the refractive index, σ Poisson's ratio, β the number of valence electrons, f_{1}, f_{2} the oscillator strengths, $\theta=\alpha_{j} / r^{3}$ (α_{j} is the polarizability of the j th ion and r is the interionic distance) and λ_{0} is the strain polarizability constant.

Using these expressions, Bansigir \& Iyengar (1961b) calculated the wavelengths at which the photo-elastic constant ($P_{11}-P_{12}$) changes sign for $\mathrm{KC1}, \mathrm{KBr}$ and KI crystals. The method adopted is based on an empirical relation that α_{3} / α varies linearly with $1 / \lambda^{2}$ in the visible region (α is the sum of the polarizabilities of the two types of ion and λ is the wavelength of light). If this empirical relation is used, one has to evaluate α_{j} / α for a large number of wavelengths from the observed photo-elastic constants ($P_{11}-P_{12}$).

In this note a new method is given by which one can calculate the reversal wavelength at which ($P_{11}-P_{12}$) changes sign, i.e. from a positive value to a negative value. In order to calculate the wavelength at which ($P_{11}-P_{12}$) is equal to zero, equations (1) and (2) can be expressed in the following form:

$$
\begin{gathered}
x^{3}+a x^{2}+b x+c=0 \\
\text { where } \quad a=\frac{45}{2}\left(\frac{1+\sigma}{1-2 \sigma}\right) P_{12}-\frac{15}{2}(1+\sigma)+3 \\
b=-\frac{15}{2}(1+\sigma)+9 \\
c=15(1+\sigma)+5
\end{gathered}
$$

and $\quad x=n^{2}$ (where n is the refractive index of the crystalline medium for which ($P_{11}-P_{12}$) is equal to zero).
Therefore x or n can be evaluated if we know the Poisson's ratio and the photo-elastic constant P_{12} for the wavelength at which ($P_{11}-P_{12}$) is equal to zero. For $\mathrm{KCl}, \mathrm{KBr}$ and KI these wavelengths lie in the ultraviolet region (Srinivasan, 1959).

It is observed (Rahman \& Iyengar 1966; Bansigir \& Iyengar, 1961b) that the variation of the photo-elastic constant P_{12} is less than 5% for the entire wavelength range (from ultraviolet to the visible region). In view of this observation, one can evaluate the value of P_{12} approximately in the ultraviolet region from the observed value of P_{12} in the visible region. P_{12} of $\mathrm{KCl}, \mathrm{KBr}, \mathrm{KI}$, $\mathrm{RbCl}, \mathrm{RbBr}$, and RbI in the ultraviolet rezion have been calculated by reducing the observed value at $5890 \AA$ by 5%. Using these reduced values of P_{12}, refractive indices at the reversal wavelengths have been calculated and given in Table 1. Since dispersion data for $\mathrm{KCl}, \mathrm{KBr}, \mathrm{KI}$ and RbCl (Gyulai, 1927), RbBr and RbI (Kublitzky, 1932) are

